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Figure 1 The sin waves shown in this figure represent a “base” frequency of amplitude 1, a
frequency tripled wave of amplitude 1/3, a 5xbase frequency of amplitude 1/5 and so forth to
16xbase frequency.  When these sin waves sum they will add in the region shown and will
subtract or destructively sum in the region near the peak of the base frequency.

Instrumental Considerations
Many of the limits of detection that are reported are for the instrument and not for the

complete method.  This may be because the instrument is the one thing that the analyst can
control.  One of the factors affecting instrumental response is rise time and electronic noise.

The rise time is a measure of the time it takes the instrument to move from 10% to 90%
of the full signal.  This is related to the frequency response of the instrument.  Any signal
generated by an instrument in response to some chemical measurement can be thought of as a
voltage vs time plot.  As an example consider the square wave.  A reasonable square wave can
be generated by summing a base frequency, f1, sin wave with sin waves of decreasing amplitude
and increasing frequency.  The summed sin waves are odd number multiples of the base
frequency in order to ensure that constructive interference leads to an increase in the voltage at
the leading and falling edges of the sin wave with out causing an overall increase in the
amplitude of the signal.  Figure 15 shows the sin waves to be summed and indicates where
constructive summation will occur.  Figure 16 shows the various “square” waves obtained when
an increasing number of frequencies are summed.  Figure 17 is an expansion of Figure 16 at the
leading edge of the square wave.
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As shown in Figure 16 the rise time between 10 and 90% of the signal decreases as the summed
frequencies increase from 1 (the base sin wave) to 17 where a reasonable approximation of a
square wave appears.  The rise time is expressed as:
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where bandwidth )f is the difference between the high frequency at which amplitudes begins to
roll off (f2) and the low frequency at which the amplitude begins to fall (f1).  (See also Figure
20.) For modern op amp based instruments there is no low frequency roll off so that tr is defined
only by the high frequency roll off point.

In general, any time varying signal can be considered to be some summation of sin
waves, expressed as a Fourier series:
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where the amplitudes A(") and B(") are themselves integrals of sin waves.  Figure 18 shows the
amplitudes of the frequencies which sum to make a reasonable square wave.  The plot shown is
called a frequency domain plot and can be obtained by taking a Fourier Transform of the time
varying data in equation 23
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Figure 3 The “square” wave as a function of number of summed higher frequencies is plotted.  As the
number of higher order summed frequencies is added the time for the signal to rise from 10 to 90% of
the full amount decreases. 

Figure 2 Plots of “square” waves obtained by summing multiple sin waves shown in fthe above figure. 
Note the ripple at the square wave that developes around the center of the base sin wave.  The ripple
decreases as more frequencies are summed.
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The Fourier Transform can be discretized as
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Solution of N2   multiplication operations are required which made it an undesirable
application.  However performing the operation as a matrix set of operations results in a fast
Fourier transform (FFT) which can be used even within fairly simple computational
packages including Excel.

This is very useful because an analog signal converted to a digital set of data within
the computer can be manipulated by the FFT transform to derive a frequency spectrum of
the signal.  If the source of noise is known it can be removed from the frequency spectrum
and the time domain signal reformed minus noise.

Not all instruments are capable of tracking higher frequency signals.  In many cases
an instrument may distort a square wave by rounding off the leading and falling edges.  This
is due to unintentional internal RC filtering of the analog components of the instrument.

Intentional filtering can be accomplished either computationally or by analog
(electronic) circuits.  Analog filtering is based on passing the electronic signal containing the
signal and reducing signal of the blank or background discriminating against the two by the
frequency at which the signal and background are found at.

A low pass circuit is shown in Figure 19. The output of the low pass circuit can be
described by:
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where R is the magnitude of the resistor, C is the magnitude of the capacitor, and f is the
frequency in Hertz of an ac signal.  A plot of equation 26 is shown in Figure 20 as a Bode plot. 
When RC = 1/2Bf the equation simplifies to:
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This particular ratio of the output frequency to the input frequency is called the cutoff frequency
and represents a way of ranking various RC circuits.  

As an example we can consider the situation where the signal of interest arising from the
chemical sample is of low frequency which during measurement picks up a high frequency noise
(from an adjacent instrument) (Figure 21).  Passing the acquired signal (signal plus noise)
through a low pass filter results in recovery of the noise free sample signal. 

The amplitude of the high frequency component often constitutes noise.  This noise
can be reduced by making use of equation 5, increasing the number of measurements.  One
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Figure 5 A low pass analog filter consits of a resistor in series with a
capacitor tied to ground.  The output voltage is sample between the
resister and capacitor.  

Figure 4 A fast Fourier transform of the square wave obtained by summing to the 17x base frequency
is shown.  The plot represents the amplitude of each frequency as a function of the frequency used in
the summation.  This FT was obtained using a simple spread sheet tool pack analysis.
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Figure 6 A Bode plot is a plot of signal attenuation vs frequency.  The frequency at which the
signal declines to 0.707 of its initial value is known as the cutoff frequency.  It is also a rough
estimate of f2, the frequency used to characterize the bandwidth of an op amp based instrument.

Figure 7 A noisy voltage vs time signal (upper trace) when passed through a
low pass filter can be enhanced as shown in the lower trace.  The low pass
filter attenuates the amplitude of the high frequency components while
passing the low frequency component unattenuated.
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way to do this is to sum a waveforms obtained.  In order to do this the phase angle of the
“identical” waveforms to be summed must be considered.    Sin waves can be identical in
amplitude, Vp, and in frequency, f, and differ in their offset or phase angle, 1 (Figure 22):

[21] V V fi p i= +sin( )2π θ

When sin waves with identical 1 are summed the effect is to increase the amplitude of the
sin wave.  This effect is termed constructive interference.  When sin waves are 180o out of
phase the effect is to sum the amplitude to zero, an effect termed destructive interference
(Figures 23-25).

Because noise is random, it can be thought of as incoherent, therefore destructive
interference is likely to occur on summation. The signal, on the other hand, is coherent, and
therefore sums constructively, thus increasing it’s amplitude.  As repetitive waveforms are
summed the result is to increase the relative amplitude of the signal compared to the noise. 
S/N increases (Figure 26).  The difficulty of this form of filtering is that it requires absolute
precision in initiating the waveforms.  If the waveforms of the base signal are at all out of
phase they will destructively sum and the signal is lost (Figure 27 ) or greatly distorted.

The second way of enhancing the signal (decrease the standard deviation of the
signal) is to perform a boxcar filter.  Here we assume that over a short time range of the
waveform the signal magnitude has not changed greatly and that variation in the measured
signal is due to a high frequency random perturbation (noise).  By summing several of the
“noise” points destructive interference will result in a loss of the high frequency noise.  The
summed points are averaged to 
give the estimated value for the signal, with a decreased contribution from the noise.   The
boxcar can be of any particular size (3 points, 5 points, 10 points) just so long as the length
of the box is small enough that the assumption that the signal is not varying is valid.  One
problem with boxcar filtering is that data is lost at the front and rear end of the waveform,
and that the number of data points is reduced by the averaging process (Figure 28).  In a
moving (sliding) boxcar, the data is treated as a string of points arranged in order of acquisition. 
For a five-point boxcar we start with the first five points (original data points 1-5, Figure 28),
average the value of those points and store as point number 3.   The boxcar is slid to the next five
points (original data points 2-6), averaged and stored as point number four.  This process is
followed sequentially with the last five points (n-5 to n) averaged and stored as the n-2 point. 
Filtering efficiency increase with the size of the box and the number of points averaged (Figure
28).

The coupling of such electronic and digital filtration to an increased sampling has
lowered the magnitude of the blank, lowered the standard deviation of the blank, thus
lowering the limit of detection (equation 12).  A concrete example of this is the drop in the
limit of detection for lead from 0.5 ppm in the 1920 to 1 ppt in the 1990s, or by nearly 5
orders of magnitude.

Acquiring the “Physical” Sample
To estimate the randomness of, for example, lead in a soil, the physical sampling of
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Figure 8 Sin waves of identical amplitude and frequency can differ by their point of initiation, or phase
angle.  In this figure one sin wave is captured beginning at oo and a second begins 90o out of phase.  The third
wave form is 180o out of phase.

the soil must be randomized and of sufficiently large number of individual “grabs” that a
normalized
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Figure 10: Waveforms in phase
sum constructively to increase 
the amplitude.

Figure 9: Waveforms that are 90o 
out of phase sum both constructively
and destructively.

Figure 11  Waveforms that are
180 o out of phase will sum
destructively.
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Figure 12 Summing a series of captured signals will increase the S/N if the noise component
is random due to destructive interference of the noise component and constructive interference
of the underlying signal.

error curve associated with sampling the soil can be approximated.  That is, the reliability of
the estimate of lead in the soil goes up with the number of samples taken. 
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Figure 13 Summing offset or out of phase or incoherent waveforms distorts the
signal.

Figure 14 Voltage vs time (or point number) for an unfiltered signal and for signals filtered by boxcar
averaging 3 and 5 points.  The larger the number of points in the box , the more  the “noise” component
decreases.  The data string shortens as con be observed by the loss of points at the beginning and end of
the data string.


