
  SELECTING A METHOD FOR LEAD ANALYSIS

The measurement of lead is based on similar chemistry to that which made lead so
useful to humanity.  There are many insoluble salts of lead, leading to the earliest
known methods for determination of lead: precipitation based reactions.  Because of

it’s easily accessible redox states of 0, 2+, and 4+, lead can be changed from a cation to a metal. Lead
can be electrolytically deposited as the metal or as the metal oxide onto an electrode for subsequent
gravimetric (precipitation) based measurements. 

Lead forms alloys of metals and metal sulfides easily.  Lead can be reduced from the
divalent state to the metal and solubilized in mercury, or even into or on a gold surface for an
electrochemical determination known as anodic or cathodic stripping voltammetry.  The alloy
of PbS with Ag2S, which can also be considered a precipitation reaction, can be used to develop
voltages dependent upon the lead concentration.   Other voltage measurements can be devised
based upon the chelation of aqueous lead to a nonaqueous carrier in which lead is partially
transported into a membrane.  The voltage across the membrane, just as the voltage across a cell
membrane, will be altered by the extent of lead transport.

The valence shell electron configuration of metallic lead is s2d10p2 .   That of the divalent
lead is s2d10p0.   The fact that the d orbital is filled makes the divalent cation “silent” to light in
the visible region, a surprising fact, since lead is a major component in two of the three primary
colors, red and yellow.  The color in the pigments lies in a charge transfer band, (an internal
oxidation/reduction of the oxide compound) as opposed to a perturbation of d electrons from
a filled lower state to an unfilled higher energy state.  As a result the most popular method for
analysis, colorimetric, is the most difficult to create.  Colorimetric methods rely upon the charge
transfer reaction (PbI2) or upon the chelation of the lead ion in which the chelate undergoes
color change with reaction with lead.  The electron promotion occurs within the chelate’s
valence shell electrons from the highest occupied molecular orbital to it’s lowest unoccupied
molecular orbital (HOMO to LUMO).  This method therefore relies upon chelation for
selectivity, something that is particularly difficult to achieve.

Better success is achieved with manipulating the s and p valence electrons or the inner
shell electrons.  The s and d electronic transitions can be accessed through atomic absorption
spectroscopy, atomic emission spectroscopy or atomic fluorescence.  The most commonly used
methods are those of atomic absorption spectroscopy using electrothermal gas phase production,
and that of atomic emission spectroscopy using a plasma source for the gas phase production
and excitation of the electrons.  Internal shell electrons can be probed using X-ray fluorescence
methods.

Success is also obtained by probing the electrons within the bonds, by checking for bond
strength via a test of the bond motion in vibrational spectroscopies. Traditional infrared
techniques have been used to understand the structure of the charge transfer based pigments.
Non-destructive vibrational methods involving reflection of light that are very sensitive and
very accurate have recently been introduced for art analysis using Raman spectroscopy.

Manipulation of the lead into the gas phase and separation based upon weight (gas
diffusion, or acceleration) provide a method for isotopic analysis.  Although in some senses this
is a weight based measurement, it falls under the general category of spectroscopic analysis,
since a spectrum of isotopes is scanned.



Table 1:  Limits of Detection
Acronym ~Dates Method LOD 

ppb = ng/g = :g/L
Gravimetric 1823 Lead Sulfide spot tests

1823-1920 Lead Chromate precipitation
UV-Vis 1920-1960 Complexation with Dithizone 20-500 ppb
EP <1980 Erythrocyte Protoporphyrin Fluorescence Assay >250 ppb
ASV 1960-present Anodic Stripping Voltammetry 20-50 ppb
AAS 1960-1970 Flame Atomic Absorption Spectroscopy 20-50 ppb
AFS 1960-present Flame Atomic Fluorescence Spectroscopy 500
ISE PbS/Ag2S ion selective membranes 10-5M (2 ppm)
GFAA 1970-1985 Graphite Furnace Atomic Absorption 50 ppb
GFAA+ preconc. Graphite Furnace AA 0.05 ppb
XRD X-ray diffraction Qualitative
IR Infrared Qualitatitve
XRF X-ray Fluorescence, house paint 0.9 mg/cm2

M. Sperling, X. Yin, B. Wetz., Frenz. J. Anal. Chem. 1992, 343, 754.
NMR 1970s on Nuclear Magnetic Resonance 1%
Raman 1980s Qualitative
LEAF 1980s Laser Excited Atomic Fluorescence 0.2 to 9 ppt
IEC Ion Exchange Chromatography 50

M. A. Bolsho, C. F. Boutron, A. V. Zybin, Anal. Chem., 1989, 61,1758.
ICP-AES 1980s Inductively Coupled Plasma Atomic Emission 20
ICP-MS 1990s Inductively Coupled Plasma Mass Spectroscopy 1-10 ppt
EXAFS 1990s Extended Xray Absorption Fine Structure Qualitative
Optodes 1990 UV-Vis methods coupled to Fiber Optics sub ppt
Immonoassays 2000s Monoclonal Antibodies will be raised to chelates

of lead sub ppt

Separation based methods in which a flowing stream of gas or liquid is carried past a
stationary support and the relative time for exit from the stationary phase is used to separate the
lead can also be used.  The most common method is that of gas chromatography for the
determination of the organolead compounds.  Liquid based methods (useful for divalent lead
or a chelate of divalent lead) have been reported but are not among the most common or
validated methods.

The use of biotechniques (enzyme assays, monoclonal antibody assays) is in its infancy.
Among all of these possible methods how does one determine the right one?  To select

a method a variety of critical choices must be made (Figure 1).   Often during a teaching lab
students are exposed to a single set of choices (calibrate the instrument).  In real life the analyst
must not only calibrate the instrument, he/she must choose an instrument.  



Figure 2: Lead moves from a variety of sources in the environment through several pathways into the body
where it is stored in different tissues or excreted.  Based on multiple studies on the uptake and storage of
lead allowable limits of lead have been set.  Values listed for physiological response represent average
concentrations resulting in certain clinical responses.

Figure 1: The feedback pathway
 used by students in most instrumental
 analysis classes is shown in the shaded
 box The full analytical process 
is more complex requiring the 
analyst to choose an appropriate
method of analysis based both on
instrumental capabilities and the
type of sample and amount of 
sample to be analyzed.  Further,
an appropriate interaction with the
“client” and the design of quality
control measures are required.

The first criteria for determining the right method is to ascertain if a qualitative or



quantitative answer is required.  It may be that the issue is not the quantity of lead, but the type
of lead present.  The toxicity of lead in soil depends upon the solubility of the lead containing
compound.  A limit of 500 ppm lead may be conservative or not depending upon the compound.
A large piece of galena, PbS, may contribute to a soil lead of 1000 ppm but be unlikely to be
tracked as dust into the house and to be digested within the stomach.  Another case might be the
tracing pigments for forgeries.  The exact type of lead pigment is the required information, not
the quantity.

If a quantitative answer is required the method selected depends, in part,  upon the
sample and the amount of work it will take to prepare it (dust, bronze, blood, bone,
archaeological bone, hair, soil).  Some samples can not be prepared (rare art, human remains
of certain ethnic groups, live human bone).  The allowable chemical preparation will in part
determine the method, since the preparation may be integral to the application of the instrument.

The total number of samples to be run will determine how routine the analysis must
become, which will determine how cost effective a particular method will be.  Whethor or not
the sample is be determined on site (rare paintings) or in a centralized lab will determine how
exotic the method should be.

Limits of Detection.

A principle factor in method selection  is the sensitivity required.   The allowed limits of lead
(Figure 2) will determine what degree of sensitivity is required.  A method for lead in soil with an
allowed limit of 500 ppm may not work for dust with an allowed limit of 5 ppm, or for blood, with
an allowed limit of 5 ppb.

The detection limits of the various methods generally drop with the date of introduction.  The
lowest detection limits are obtained with graphite furnace atomic absorption, inductively coupled
plasma-mass spectrometry, and stripping voltammetry as shown in Table 1.  Lower detection limits
can be obtained with several advanced techniques.

Figure 3 illustrates that, roughly speaking, the detection limits vary with time in a log-log
manner.  The first method for lead analysis was based on the separation of silver from lead during
the metallurgical process, cupellation.  By the Roman Empire knowledge about the oxidation and
reduction potentials of lead with respect to the known metals was codified within the days of the
week.  The first “real” analytical chemistry begins with Acum’s text (1820) which describes a PbS
method for lead analysis.  By the beginning of the 1900s German organic chemists had devised a
colorimetric method lead based on dithizone complexation, a method used until the 1960s.

How are Limits of Detection Determined?

The limit of detection for a method depends upon the random error introduced in sampling,
chemical preparation, and the instrument and on the response of the method to a change in the lead
concentration:

A measurement can be considered to be an average of a small sample from a population of
an infinite series of measurements (a population) which are influenced by the measurement process
in random and non-random fashions.  Thus one's "true" weight may be at 145 lbs but wishful
thinking and a squinting eye (determinate error) sets the weight at 140 lbs.  If one weighs 



Figure 3: The Limit of Detection has fallen in a roughly log-log fashion with time since lead was discovered
and manipulated.  The early analysis of lead centered around removal of silver (cuppellation) which could be
accomplished to approximately 99% lead purity.  The relative oxidative reactivity of lead compared to other
known metals was established and codified by the time of the Roman empire (days of the week).  Gravimetric
methods were introduced in 1820 in Acum’s analytical text.  Shown in the figure are various methods (x axis)
and the range of symptoms policy makers worried about (images).  The upper portion of the figure gives a few
important social/scientific breakthroughs in lead toxicity.  It should be noted that concern over lead poisoning
centers first on death, then on occupational health issues and finally, as the LOD has dropped, on
developmental toxicity.

oneself everyday (Figure 4) for one year, a plot of those daily measurements will show some
fluctuation about the "true" value.  A histogram is also a measure of the fluctuation (Figure 5).  The
histogram represents a Gaussian or normal population that has not been sampled adequately.  A
“normal” curve is described by the function:

[1]



Figure 5 My weight over summer plotted as a function of pounds vs days.  The first 11 days represent average
summer weight (baseline).  The next 10 days represent weight gain during vacation, and the final section
represents weight gain on the beginning of the semester.  The line marked peak to peak variation represents
the maximum and minimum weights measured during the beginning of the school year.

Figure 4 Histogram or frequency plot of the weight data from above figure for the “baseline” and “vacation”
portions of the data.  The striped areas represent the fit normal curve to the data (solid) based on the calculated
mean and standard deviations.  Note that the “real” data is not well approximated by the normal data with this
population size, and that the estimated populations signficantly overlap.

where f(x) is the probability of observing the number (number of observations expected), F is



Figure 6 The standard (s=1, :=0) error curve, with its first and second derivatives showing that the curve
has inflection points at s ± 1.  The inflection points are observed in the first derivative as the points at
which the curve crosses the x axis and in the second derivative as peaks.

the variance which is estimated by the standard deviation, s, x is the value of x and  is thex
mean value of x.    Physicists and mathematicians refer to this function as the zeroth moment.

The normal error curve is shown in Figure 6.
This curve has the following characteristics:
a. There is a peak at x = :
b. The peak is symmetric
c. There are inflection points on either side of the peak which define F, which

accounts for 68.3% of the measurements.

The first and second derivatives of the error curve are also shown.  The first derivative
crosses the x axis at the mean of the population.  The mean is the first moment of the population
and can be calculated by equation 2:



Table 2: Statistical Moments
Moment function common name formula
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Figure 7 A Normal or Gaussian or error curve for samples of an N-1,000,000 member
true population with a population standard deviation of 1.  The sample size, n, increases
from 3, 6, 9, 10, 15, 20, 25, 30, 50, to 75.  As the sample size increases the standard
deviation of the sample decreases while the peak associated with the mean increases.
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The second moment is the standard deviation of the population,  a measure of the width of
the normal curve.   The standard deviation, s,  is calculated:

[3]

If we consider a theoretical population consisting of a large number of individuals, N, with
a population standard deviation of spop of which we only sample a few members, n,  then the standard
deviation of the sample, ssam, scales with the number of individuals sampled:
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If N is very large (10,000) compared to the sample size (1-100) then equation 4 reduces to 
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Figure 7 shows how the error curve varies as the population size is increased (N= 1,000,000)
from n=3 to 70.  Note that the standard deviation decreases and the population height increases.
Equation ([5]) tells us that the standard deviation decreases with 1/%n (Figure 8).  Consequently
our goal is to increase the sample size in order to reduce the standard deviation.

For a population following a normal error distribution 68% of the area under the curve
falls between ± 1s; 95.4% of the area under the curve falls between ± 2s, and 99.7% of the area
falls between ± 3s (Figure 9).  Another way to state this is that 99.7 % of all the measurements
made for a population will fall between -3 and +3 standard deviations. 

Two rules of thumb derive from this type of curve.   The first rule of thumb can be
derived from the observation that 99.7% of the measurements are encompassed by ±3s.  If you
imagine 
that the data has been acquired as a time stream (like my weight in Figure 4) then the data
fluctuates about the mean.  The maximum and minimum data points will be observed as the
largest positive and negative going peaks in the time stream.  These points correspond roughly
to the maximum outliers in the bell curve, from which we get a useful rule of thumb:

[6] pp s~ 6



Figure 8 The standard deviation decreases as the sample population increases, as
observed by a linear plot of s vs 1/%n for the data shown in  Figure 7.

Figure 9 A normal error curve contains 68.3% of the measurements between ±1s ; 95.4% of the
measurements (area under curve) between ± 2s; and 99.74% of the measurements between ±3s. 
Triangulation of the peak (drawing a line along each side of the curve through the inflection point,
estimates the peak base width between ±2s (4s total) and ±3s (6s total).  The top of the peak
(between ±0.05s) accounts for 3.98% of the population of measurements.



where pp represents the peak to peak distance between the largest positive and negative going
peaks.

The second rule of thumb is that the area under a very narrow segment at the peak
contains a fixed proportion of the population (for example ±0.05s contains 3.98% of all the
individuals within the population) (Figure 9).  Therefore as the population size increases the
peak height will scale also (e.g. 3.98% of n= 100 is 3.98 and of n=1000 is 39.8).  For this reason
the peak height is often used to measure the intensity of a signal, assuming that the signal has
a normal error shape.  

To scale for the peak height the Gaussian equation is modified by a pre-exponential
factor, A, which is the peak height.
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The rule of thumb, peak height proportional to area under peak, fails when the population is
skewed.

The third moment (Table 2) tells whether or not the population is skewed, or, in fact, an
ideal, random population.  The formula for the third moment is given as:

[7]

A positive skew means that the population has a tail at the higher values of x.  A negative skew
means that the population has a tail at lower values of x.  A variant of this number is often used
in chromatography to determine the tailing of a peak.  In this case an asymmetry factor is
calculated

[8]

as shown in Figure 10.  When a peak is asymmetric peak heights do not correlate with the area
under the curve and it is better to use an area based measurement as opposed to a peak height
measurement.

We are now ready to examine the question of resolution and the related question of limits
of detection and S/N.  To do so let us consider two normal curves that are adjacent to each other
(Figure 11)  Resolution embodies our ability to distinguish one population of measurements
from another. 
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In general R must be greater than 1 in order to resolve the peaks. If the peaks have similar
shapes and standard deviations then the baseline widths are equal (Wa =Wb) and equation 9 can
be simplified:

[10] R
x x

W
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−

How much do the populations overlap when R = 1?  This can be estimated by recalling
the rule of thumb (Figure 9) that the triangulated base of a normal curve is between 4s and 6s.

[11] x x sb a− = 6 x x sb a− = 4

By substituting equation [11] into equation [10] equation [10B] can be obtained:
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In this class we generally use the first of equations [10B].
If the means are 6s apart then each population “touches” when 3s has been covered.  The

population that extends beyond 3s is (100-99.7)/2 = 0.15%.  Thus 0.15% of the population of
A lies under the bell curve for the population of B and vice versa.  If the means are really only
4s apart then population A touches population B at 2s from the mean of A.  The population that
extends beyond 2s is (100-95.4)/2 = 2.3%.  Thus a resolution of 1 means that between 0.15 and
2.3% of the population could fall in the second bell curve.

For our example involving vacation weights  the resolution  (using equation 10B) of the
vacation (not school!!) weight from the baseline weight is R = (141.9-140)/6(.329) = 0.96.
Since R <1 we have not completely resolved the vacation weight from the baseline weight.
Resolution could be accomplished by either having me gain more weight during vacation
(change the slope of the curve) or by having the standard deviation decreased (only weigh
myself in the same clothes every day).

The limit of detection is similar to resolution as it is also based on the idea of
overlapping bell curves.  Analytical chemists consider that one population can be detected when
the mean signal for the population lies 3 standard deviations away from the mean signal for the
blank or baseline:



Figure 10 A population that is skewed does not obey equation 1 for an error curve.   
Most importantly the peak height is not proportional to the area under the curve.

Figure 11 Resolution is computed from two overlapping normal populations.  The triangulated
baseline width is used for each peak.



[12] x x sLOD blank blank= + 3

The population of the detectable signal and the blank touch at 3s/2populations=1.5s per
population.  The percent of the population that resides beyond 1.5s from the mean is 6.68%.
We falsely attribute 6.68 percent of the measurements from the blank as part of the population
of interest.    For our example (Vacation vs Baseline weights) the limit of detection is 140 +
3(0.329) = 140.977 lbs.  Since the vacation weight is 141.9 lbs, we can clearly detect a weight
change.

The limit of quantification is more stringent. 

[13] x x sLOQ blank blank= + 9

In our example (Vacation vs baseline weights)  the limit of quantification will be 140 + 6(0.329)
= 141.97.  The weight change during vacation was 141.9 lbs so that we are not able to quantify
the weight change.

A very similar measurement is termed the signal to noise ratio S/N.  In this number the
signal, S, is the difference between the mean of the signal and the mean of the blank, while the
noise, N, is the standard deviation, s, of the blank:

[14]
S
N

x x
s

signal blank

blank
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−

Referring to the time based plot of the weight gain (Figure 4) we note that there are fluctuations
of weight around a mean in the area marked baseline and the area marked vacation.  The
distance from the maximum to the minimum is termed the peak to peak fluctuation and was
noted as approximating  6s (equation 6).  From this plot we can determine the S/N of the
vacation weight as (140.977-140)/(142.8-141.2)/6) = 3.66.

Analysis of Variance
Suppose that the resolution between populations is small enough that it is not

immediately visually apparent, i.e. baseline resolution is not observed and the peaks overlap to
the extent that they appear as a single large “lumpy” peak. How is this situation handled? 

An example is to look at the histogram of weights in Figure 5 and apply a statistical test
to “resolve” the populations.  The first step is to assume that the bar graph in Figure 5 represents
a random homogeneous population.  A random population assumption allows us to make use
of normal or Gaussian mathematics. 

In order to assign confidence in our data we first assume that they can be described by
the normal curve formulas (equations 1-3).  We then compute the mean and standard deviation
(width) of our population, use these numbers to compute the expected number of observations,
and plot this curve as an overlay of the histogram of real data.   If the match is good (as



measured by deviations from the histogram to the expected observations) then we accept the
computation.  If the match is poor then we must check to see if we really have two or more
populations.   (An examination of the Figure 5 shows that the error curves estimated from the
sample population do not actually match the data very well).

As an example let's determine if the vacation weight is part of the random fluctuations
in  weight with time or is truly a separation weight population.  We will perform an analysis of
variance on the system as shown in Figure 12.  The actual computation for an analysis of
variance is rote (or by formula) but the concept behind the analysis of variance is to find a
theoretical population curve or curves that best matches the histogram (shown visually in Figure
5).  The tool by which a population is judged to fit a model of a single or a multiple population
is the F statistic.  This statistic computes the expected mismatch between acquired data and the
predicted population based on the population size and the uncertainity one is prepared to expect.
  When the calculated F value is greater than the expected F value there is too much variation
in the attempt to match the data to a single population.  The alternative hypothesis, that the data
is better described by two sample populations, is correct.  

The best way to learn to do an ANOVA (analysis of variance) is to follow the example



Sample Normal" Vacation Totals

i=16n j = 1 j = 2 j =16k
1 140 141.7
2 140.1 141.9
3 139.8 141.4
4 140.6 142.3
5 140 142.3
6 139.8 140.6
7 139.6 142.3
8 140 142.7
9 140.8 141.7
10 139.7 141.6
11 140.2

nj 11 10 n = 11+10=21
mean 140.05 141.85
s 0.36705 0.5961
s2 0.1347 0.3561

Tj = 3i
nxij 1.5406x103 1.4185x103 T = 3Tj = 2959.1

3( xij)2 215769x105 2.01217.4 SS =416986.8

TSS = total sum squares = SS-(T2/n) = 21.4381

BSSS = between samples sum squares = 3j=1
k(Tj

2/nj) - (T2/n) = 16.885

BSMS = between sample mean square = BSSS/(k-1) = 16.885/(2-1) = 16.885

R = residual error = TSS-BSSS = 21.438-16.885 = 4.55

RMS = residual mean square = R/(n-k) = 4.55/(21-2) = 0.2395

Fcalculated > predicted at 5% probability of randomness then difference is significant
=BSMS/RMS = 16.885/0.2395 = 70.477
Fk-1,n-1," = F1,20,0.05 = 4.35 (from table)

Since BSMS/RMS = 70.5> F@5% (4.35) probability the result is significant.  We note that random
variability will not account for the differences observed.  We are 95% certain that I gained weight.

Figure 12: An example calculation of analysis of variance (ANOVA) using the data from Figure 4.  The
value for the theoretical F number is found in the appendix.



step by step.  An ANOVA can also be calculated on a spread sheet such as Excel.  

Calibration Curve.
Each measurement we make of the signal for a concentration consists of a histogram of

measurements centered around a mean signal with a standard deviation associated with the
measurement.  We can construct a calibration curve using these variable measurements.  For
the sake of argument, let us assume that the baseline weight (Figure 4) was associated with
eating 1500 calories/day, the vacation weight gain was associated with eating 4000/day and the
semester weight gain with eating 6000 calories /day.  Using all the data shown we can construct
a calibration curve (Figure 13).

The “calibration” curve is constructed with two sets of data.  The first includes all the
weight measurements and illustrates the “scatter” of data, similar to the baseline of a Gaussian
curve.  The second set of data is constructed from the mean of the scattered data and the
standard deviation associated with that mean for each calorie/day value.  This data has been
used to create a regression curve which projects backward to the weight associated with zero
calories per day (how easy it is to “misrepresent” with statistics!!!).

The errors associated with calibration curves are computed in a fashion similar to the
ANOVA.  The variability of all the measurements is the sum of the variability in the x
population, the variability in the y population and the variability along the line:
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where Fxy is the variability along the line:

[16] σ xy i line i line
i

N

N
x x y y= − −

=
∑1

1
( )( )

The differences between the measurement and the line should be randomly distributed
in positive and negative directions, therefore the sum of the differences should go to zero.  In
this case the variance associated with an individual measurement should approach the
randomness in the x and y populations:
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What this equation states is that a good fit (r2 goes to 1) occurs when the variance along the x
axis summed to the variance along the y axis is close to or equal to the total variability of the
data.
We expect r to be >0.9 for a good linear fit to the data.

How good is good for a given population size?  If we report an r value of 1 for a two



Figure 13 A calibration curve of the data from Figure 4 assuming the weight change is “calibrated” or associated
with calories/day.  All of the data is plotted (small red dots), as is the mean weight associated with each calorie
count and the standard deviations.  From this plot it should be apparent that each individual point in the
calibration curve represents a population which, if random, or Gaussian, is described by an s and a mean.  A
regression line is fit through the means, but does not, in fact, pass through any of the three means.  The regression
line is described by residual error, r2, of 0.994.  The regression line is projected back toward a blank value, weight
associated with zero calories per day!!!.  The error associated with the line fit is used to project error associated
with the intercept (dashed lines).  

point line we have zero confidence in the value of r = 1, because we can always fit a straight line
through two points.  If r = 1 on a line with 100 points we are much more confident in the value
of r.  A line of three points  with an r=0.9 would have a random chance of such a correlation
29% of the time.  Thus we are only 71% confident that the line is the appropriate fit through the
data.  If we have a five point line with an r=0.9 we have a 3.7% change of random events giving
us the line, or we are 96.3% confident that the r value is accurate.

Another useful piece of information can be obtained by an analysis of the variability of
the data in the regression.  A backwards projection of the magnitude of error along the
regression line can be used  to get an estimate of the variability associated with the intercept
(blank).  This is useful in cases where the analyst has fouled up and forgotten to obtain the
requisite 3 measurements of the blank for determination of the standard deviation of the blank.
An estimate of the standard deviation of the blank can be obtained by error analysis of the
intercept.  Most standard statistical packages performing linear regressions will give intercept
error estimates.  The error associated with the means and with the fit to the line are used to also



project backward the error bars associated with the blank (see Figure 13).
Chemistry and/or instrumentation comes into play with the calibration curve by setting

the distance along the x axis.  The slope of the calibration curve or the sensitivity of the method
is measured in the x axis.

[18] x x b concsignal blank= + [ .]

where b is the slope.  At the concentration limit of detection equation 18 becomes:

[19] x x b conc LODLOD blank= + [ . ]

By setting equations 19 and 12 equivalent to each other we find that

[20] [ . ]conc LOD
s
b
blank=

3

Equation 20 tells us that the concentration limit of detection is determined by a ratio of
the precision of the measurement to the sensitivity of the instrument.  If we want to lower the
limit of detection we must either increase precision (lower s) and/or increase selectivity or
sensitivity.  One of the easiest ways to lower s of the blank is to increase the number of
measurements (equation 5).

When comparing various instruments the measurement of interest is the concentration
LOD, not the signal LOD.

Not only are LOD and sensitivity of the method important, but also the linear range.
The linear range is the concentration range over which a single slope “b” applies.  There are
very few instrumental methods which have large linear ranges coupled to low limits of
detection.  Figure 14 illustrates a typical instrumental calibration curve with the linear range
denoted.



Figure 14 A calaibration curve is often linear over a specific range.  The lower end is terminated with the LOD,
often a function of the standard deviation of the blank.  The upper end of the linear range may sometimes exhibit
a decrease in signal intensity with increased concentration.  This is particularly the case for some fluorescence
measurements.


