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SUMMARY
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prepared as described previously [3, 4]; the glassy carbon electrode (GCE)
was obtained from Tokay Company, Japan.
- 8-Mercapto-1,5-diphenyltetrazolium was prepared as described by lrving

et al. {1] by oxidation of dithizone with permanganate in basic solution.

All measurements were made at 25 °C. The chemacals used were analytical
grade,

Experiments were generally performed in test soiutmns contamlng 510"
M dithizone, with 1 M sodium hydroxide—~0.2 M sodium sulphate—20 %
ethanol as supporting electrolyte (pH 13.0). ‘

RESULTS AND DISCUSSION

Among the products of chemical oxidation of dithizone, tetrazolium and
disulphide species have been recognized [1]. The waves attributed to these
two species in solutions of dithizone oxidized by atmospheric oxygen are
discussed here in some detail. In addition, the electro-oxidation of dithizone
was studied at mercury and carbon electrodes.

Electrochemical behaviour of the tetrazolium derivative

In dithizone, the azo group undergoes a 2-electron reduction to a hydrazo
group [2]. When dithizone undergoes autoxidation, this wave is preceded
by another wave at more positive potentials. The height of this wave, which
is about 0.1 V more positive than the original wave, increases with the time of
oxidation, and finally reaches the same height as the original wave. This result
in conjunction with controlled potential coulometry, indicates that the
autoxidation product is reduced in a 2-electron step. The linear dependence of
the height of this wave on the square root of the mercury column helght and
the fact that the temperature coefficient varies betweeen 1.4 and 1.8 %/°C,
indicate that the wave is diffusion-controlled, and its height is therefore a
linear function of the concentration of the oxidized form. The same behaviou
was observed for the oxidation product formed by reaction of dithizone thh
permanganate.

The oxidation product can be converted to the parent dithizone by electro
réduction. This was proved both by controlled potential electrolysis and by
cyclic voltammetry. Electroreduction at the potential of the more positive -
wave, gave a reduction product which showed the single polarographic wave
of dithizone (Fig. 1) and an absorbance spectrum (Fig. 2) identical with that_.
obtamed from an equimolar solution of dithizone.

- In the eyclic voltammetric studies at the HMDE (Fig. 3), the red reactaon
product of the electrode process was observed and photographed at an elee,
trode potential more negative than that of the peak potential of the first -
wave. i

! Hence the autoxldation product is easily reduced to dlthlzone which can;
then be further reduced at the N=N bond. Because of the previous identifi-;
cation of the tetrazolium species [1], and because the half-wave potential of-
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Polarographic reduction of an autoxidation intermediate .
In the course of autoxidation of alkaline dithizone solutions, a new reduc-

tion wave was observed at —1.25 V vs. SCE; this disappears in completely -
oxidized solutions (Fig. 4). The wave corresponds to a reduction of a disul- .
phide intermediate in the autoxidation process .

e
one which canﬁ |
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ave potential of
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Fig. 3. Cyclic voltammogram of oxidized dithizone solution at the HMDE. Red,: azo—
hydrazo reduction. Red,: tetrazolium—azo reduction.

Fig. 4. Polarographic waves recorded for dithizone solutions before (0}, during (1) and
after (2) an aerial oxidation.

Anodic waves of dithizone at mercury electrodes
The one-electron anodic wave of dithizone [2] corresponds to mercury salt
formation

2 HDS™ + Hg= Hg(HDS), + 2 e _ (3)

This scheme is supported by the results of cyclic voltammetry, which indicates
that the product of the ancdic reaction is solid and can be stripped (Fig. 5).

. The solid violet product was observed by microphotography; the spectrum of
a carbon tetrachloride solution of the product was the same as that of mercury
dithizonate. The dependence of i, on v* indicates that the mercury(l)
dithizonate formed can undergo disproportionation.

The anodic wave is therefore a measure of the concentration of the thiol,
form of dithizone, and can be used for the determination of this reduced

» form. Accordingly, the height of this anodic wave decreases in the course of
chemical oxidation. '
Electro—oxtdatton of dithizone at carbon electrodes :

‘Attempis to carry out electrooxidation on platinum or zmpregnated

= graphite electrodes [5] led to the formation of insoluble layers at the electrode
surface. Useful current—voltage curves were abtained with glassy carbon and
carbon paste electrodes (Fig. 6). Nevertheless, even with the carbon paste
electrode, the initial oxidation process involved the formation of a solid layer
at the electrode surface. Thus it is impossible to draw proper conclusions
about the mechanisms, although, as in the case of autoxidation, it appears
that the primary electro-oxidation product is a sparingly soluble disulphide :

compound which disproportionates and can be oxidized in the second electro- -

.chemical step. From the analytical point of view, the peak current, or limit-,.
ing current at a rotating carbon paste electrode is proportional to the concen-
tration of dithizone.
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Fig. 5. Cyclic voltammogram of dithizone solution at the HMDE recorded after a pre--

electrolysis (dashed line).

Fig. 6. Oxidation of dithizone at the CPE, The dashed line shows the background current.

Conclusions o
The application of the electrochemical methods allows the concentration

changes of dithizone (HDS"), its disulphide (HDSSDH) and the fetrazolium
species (DS) to be followed during an aerial oxidation process (see Fig. 7 and
Table 1), This is consistent with the overall scheme

2 HDS™ ~ HDS—SDH + 2 e Y]
HDS—~SDH -~ DS + HDS™ + H* - (B)

The aerial oxidation of dithizonate to the disulphide compound takes place
at a larger reaction rate than the disproportionation of the disulphide com-
pound (Fig. 7); hence the concentration curve of the disulphide species shows
2 maximum. Consequently, the rate of oxidation reaction is controlled by
the disproportionation of disulphide in aqueous basic dithizone solutions.
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TABLE 1

Limiting eurrents and absorbance of dithizone and its intermediates during an aerial oxi-
dation in agueous basic solution

28 h -

2.24

0.90

2.10

Time lox Ired, fred, Ireq, Ao A A Auy
{nA) - {nd) (nA) (nA)

0 min 0.70 2.38 - - - - -

5 min - - — - .50 0.81 1.00
30 min 0.61 2.30 - 0.31 - - -
40 min - - - - 0.566 0.79 0.93
60 min 0.54 2.24 - 0.36 0.57 0.77 - (.88
90 min 0.48 2.19 0.34 0.42 0.63 0.76 0.83

sk 2h 0.42 2.24 0.45 0.53 0.69 0.72 0.76

3h 0.36 2.24 0.50 0.70 0.77 0.69 0.66

5h 0.22 2.24 0.98 1.01 0.92 0.60 0.40

Th 0.17 2.24 1.18 1.28 1.04 0.54 0.16

9h - 2.24 1.62 1.93 - - —
21 h - 2.24 1.57 2.10 1.03 0.40 0.05
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